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1, Ytmammta1 l quatlonr. In the case of unsteady motions in an intrin- 

sic gravity field it is necessary to find the combined solution of the Eln- 

stein gravitational field equations and the equations of the conservation of 

momentum energy contained in them [l] 

&k_ $ dik = mT$ 

X2$ IV = (p + E) v = E + pv 

Here Ai is the curvature tensor, i”‘, the ener~-moments tensor, x the 

Einstein gravitational constant, W the heat content per unit mass, v the 

specific volume, nk the component of four-velacity. 

If the analysis is limited to centrally-syunnetrie motions, the space-time 

lnetric may be selected in the followlng form: 

dsa = e@dt’ - ehra - ra (dpg + sina p d@) 

go0 zzz -cv, 631 = eh, 622 = r2, g33 = r2 sin2 p (1.2) 

3/q = exp [I/* (Y + h)] ra sin p 

Henceforth, we shall study only radial flows, when d@ i dt =I 0, dq i dt = 1 
In thiiJ case the chrano~trically-invariant velocity is given by Expression 

848 
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Here 

ds2 = ey (c0dt)” = (cf3dr)2, 8 = jfl - a2 / c2, dz = e’/?v 

where do Is an element of proper time, and the components of four-velocity 

take the form 

uo = L .A!!_ = -!_ &I?' 1 

Odz 0 ’ uo = goou 0 = _ e'lz v 
0 

u1 = $4 = 2 (+A, Ul = g11u 1 = 2_ cl/.. T4 
c0 ’ 

U&O + Ug2 = - 1 (1.3) 

The equations of the conservation of the energy-momentum (1.1) yield the 

equations of motion and the continuity equation. Since dW = Tdo + vdp, 
(where T Is the absolute temperature, and Q the entropy), then for the 

adiabatic processes considered, the equation of conservation of entropy 

ag,, = 7 ukuz az, + T a$ , 2 =O (1.4) 

must also be used. 

The system of equations (1.4) Is a complete system of conservation equa- 

tions characterizing the adiabatic flows. Substituting the four-veloc!Ity 

components (1.3) here and taking Into account that 

d(l1#-~):=~+2$ +tmPdg 

we obtain a system of equations of the hydrodynamlos of radial flows In an 

Intrinsic gravitational field (1.5) 

A$.+a$=O, c=- 
C2 

Let us note that the expression for 

lstlcs of these equations has the same 

tivity 

+$+f(A$+a-$)=O 

A zz cxp [L-x) 

the velocity a* along the character- 

form as In the special theory of rela- 

This Is Indeed completely natural since the presence of the gravitational 

field cannot change the local relationship between the chronometrlcally- 

Invariant components of the three-dimensional velocltles a*, a, UI measured 

at each point r by means of the observer's clock at the same point. However, 

as follows from (1.6), the first characteristic on the scattering front 
(w = 0) burns out to be rectilinear In the variables 1 , T which have 

physical meaning, while It Is curvilinear In the r , t variables. 

Let us write down the field equations 
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a (m-h) ---_~l+~la~o~=l-~~(E+p~) 
ar 

Aa(re-h) _ - - 
at 

- xcAT,l = g (8 + p) 

(If r g) e-a = 1 + g (p + E f) = 1 + Xr2T11 (1.7) 

xT2* = xTs3 = X/J = 

1 8(Y--Ah) a~ ah 
+-Z.--K----- ar i3r 

Only two of these equations are independent of (1.5). It is convenient 

to write these two equations as 

Aah+aah=_u 
at ar A(l+$)$+.%+O (1.8) 

Equations (1.5) and the first equation of (1.8) determine the solution 

p=p(rJ), G=Q(T,.i), a=a(r,t), h=h(r,t), v=v(r,t) 

for a given equation of state p = p(e) . 

1) In the static case a = 0 , the second equation (1.8) yields ?A/at= 0, 

and from (1.5) we have a]n v/dt = 0, da/dt = 0, therefore 

dp 
dr= - -+ (P + 8) g (1.9) 

Furthermore, rie have from (1.7) 

-$- (re+) = 1 - XI-?&, e-9- $ = Xr2p + 1 - e-h 

using these relationships we eliminate v(r) from (1.9) 

j_ r (P + 8) U+ w2) 
dr {(p + e) - 2rdp / dr} I 

== 1 _ Xr2E (1.10) 

Let us note that for p = const the equation of state of the Einstein 
closed static model of the universe c + 3p I 0 Is obtained from (1.10). 

We hence conclude that the Einstein model corresponds to the model of a 
star with constant negative pressure. From the viewpoint of the external 
observer, closeness of such a star means lmposalblllty of Intersection of 
the limits of the star with the geodesic line of any signal, however, the 
absence of limits Is not at all reflected, In principle. Hence, the closed 
static model may be considered aa a self-contained bounded non-Euclidean 
formation submerged In an exbernal spatial background, and therefore, closed- 
nes6 In no way denotes the uniqueness of this model of the universe. 

Solving (l.lO), we determine p(r), then X(r), v(r), which solves the 

equlllbrlum problem completely. 

2) Of aonalderable Interest Is the study of radial motlons of an Ideal 

fluid in a spealfled external gravitational field, for exaB@e, the external 

or internal Sohwarzschild field, when X - X t), v - V(F) are given functions ( 
of r. It Is easy to see that In this case, by Introducing the independent 
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variable drl- Adr , Equations 

hydrodynamics equations of the 

only in the kind of free terms 

(1.5) are reduced to a form analogous to the 

special theory of relativity, and differing 

851 

For the external Schwarzschlld field 

Yfh=O, $+A+= 0, f+ = ev = 1 _ $!_ , r. _ ““,,Mo 

hence 
dv TO 

drl= r2(1 - r0/ rap 

Here M,, Is the mass of the central body generating the field. 

3) In the general case of adiabatic flows In an Intrinsic gravitational 

field, finding the solution of the combined systems of Equations (1.5) and 

the first equation of (1.8) Is of considerable difficulty. At the conclu- 

sion, we will obtain the solution In the asymptotic case of motions with 

velocities close to the velocity of light and of the ultra-relatlvlatlc equa- 

tion of state. Here we propose a method of successive Integration of (1.5) 

and the first equation of (1.8) by utilizing (1.7). 

First of all, let us eliminate the function v = V(P, t) from (1.5) by 

usl,ng the second equation of (1.8); we obtain 

(1.12) 

Let ua transform to the Independent variables r, )r In (1.12); to do 

this, we find the Jacobian of the transformation a(t; r)/a(A; r) and also 

at/ar by using the first equation of (1.7) and the first equation of (1.8); 

we have a (t; r.) at AAg 
~~~~_-__-- 

a(h;r) ah A4 ' 
+=A(l-2) (1.13) 

Here 

Al = e-h, A2 = 1 + qw2 - ch, A3 = xr2e + e-A - 1, A4 = x (p + E) (r/e)’ 

The relations (1.13) reduce’Equations (1.12) to the sysnnetrlc form 
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( d a IIIV _ d ah v 

lalnr P+ - 4 (At;+ + Asa+) -- 
-2d,++=O, d,$-dA,a$r=O 

Let us recall that W, E and p , the functions u , Q , and Equations 

(1.4) contain three unknown functions 

v = 21 (h, I"), a = a (A, r), (i = (T (1, 7) 

for the selected equation of state, say for put= 0 . 

These equations may be Integrated by the method of characteristics. 

After this we determine v = v(A, r) from the first equation of (1.8), 
wh;lch becomes in the X, r variables 

(1.15) 

Finally, by using (1.13) we Find t = tfl, r), which yields the complete 

solution of the problem. 

Hence, the successive integration of (1.14), (1.13) and (1.15) permits 

the construction of the solution of Isotropic motions not In an associated 

reference system where Q = 0 , but in one connected with the Isolated cen- 
ter of symmetry. The three-dimensional velocity a , measured In such ref- 

erence systems, has a specific physical meaning in the formulation of bound- 

ary value problems both in a specified extrenal gravitational field, and in 
the study of motions in intrinsic gravitational fields. 

Moreover, in the limiting case of no gravitational field (Galilean metric) 

Equations (1.5) transform into the hydrodynamic eq3latlons of the Special 

theory of relativlty, while such a transition is meaningless in an associated 

reference system since the latter is determined at once from the condition 

that the flux of energy-momentum equal.5 zero. In the case of Isentropic 

motions the system (1.14) reduces to two equations. 

2, Qumrti rolutlon8 of partiaullU? o&roe of the l tlur;tion 0t state. 

a) Dustfike material ('f. In cosmological problems it is 

customarily assumed that the pressure is negligibly small as comp8red to the 

mean density of matter in the universe, I.e. p 4 E = peg. ff we put p=O, 

0 = const , then w = 0 , d In u = - d In E and Equations (1.14) simplify 

*) R.Tollmann (cl], p.344) first solved the problem of motion of a gas with 
p = 0 in the associated reference system. However, the velocities for the 
internal Schwarzschild problem were not evaluated in this solution. 
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The first equation of this system is easily Integrated 

es= 1 -S/C' =I A@+~) 

Furthermore, we find from the second equation of (2.1) 

E = (a), (Ur) - &-l) &, 3, = oxp(SB,dA), L3.J = @31dh, 

(2.2) 

(2.3) 

Utilizing (2.2) and (2.3), we obtain for the function v(f, a) at p - 0 

from Equation (1.15) 

~~~+~~~-~) 
a%re 

=@jj-Z+$ (2.4) 

This equation Is also solved In quadratures. The equation of the charac- 

teristics 
a?@ a 
ar= 

$ xr&(cDn--Bs-1) 

1 
-- 

CD1 r 1 

yields xl(8.,r) . The second integral determines the solution along the 

characteristics 

I=: 51% (I- AI@I)(%---Ba-l)dr +a In r + x(x1 (h, r)) (2.5) 

Finally, the first equation of (1.13) gives the last quadrature 

Hence, a general solution has been obtained for the problem of the motion 

of dustllke material, given by the Integrals (2.2) to (2.6) and depending on 

the four arbitrary fun&ions %, QZ, $, x . 
, 

In solving concrete boundary value problems It Is necessary to specify 

the initial velocity distribution eO= 6,(x, r) and to determine Ql after 

which it Is easy to find Q,, $, x . 

b) Ultra- relativistic approximation 

Let us consider the case of adiabatic motions with velocities close to the 

velocity of light. Let us put a/~ = 1 - 26 , where A * 1. Neglecting 

higher orders In A let us write the system (1.5) and (1.8) as 

A a III (WV) 
at’ + ar 

aln(Wv) = J_ 
r ’ 

Aa$ +‘$=(I, A;; --;+ g=O, t'=et, lI=InA+h-22nW (2.7) 

Let us note that 

d In (WV) = a ‘,apw’) dp + a IniF’ da 

The first equation of this system, taking the fourth into account, yields 
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We transform the third equatlon,of (2.7) analogously 

(2.8) 

A a (In A + a) a (In A + h) 
at’ + ar 

a1nw 
-2(~),(A~+~)=O (2.9) 

For the ultra-relativistic equation of state 

p =(k- I)&, WV = v(ev +pV)= s 

Hence, taking Into account that pvL= o we find 

YW) k-l k-2 

3P 0 ==kp’ =kp 

Substituting these values into (2.7) and transforming to the Independent 

variables p, r f we obtain the system 

aa -- 
ar 

+ xrpeh- b 2 = 0 
aP 

a(lnA+h) __b a(lnA+h) + 4(k-1) = 0 
ar ap (2 - k) r 

~%zd.l 2kp 
ap 9 

,_?!&+,~=O, b= 
(2 - k) P 

(2.10) 

The first equation is Integrated at once 

1 
1 

-e-h = 7F1(r)---c~, 7 = prSkj%k, cl = %J’z(z G k, (2.11) 

After this, it is easy to write the solution of the second equation of 

(2.10) 
A = e-hF2 (r) p zW-W = 1 - it_ &‘, + c1 $‘,pWWk 

( r ) 
(2.22) 

The third equation of (2.10) yields 

a = F3 rr) (2.13) 

The fourth equation of (2.10) may be solved after determining v = v(p,r) 

since A = exp[*(X - v)] enters therein. To determine v we use the second 

equation of (1.8) wrltten In the p , r variables, where In our approxlma- 

tion 
2A ah at’ w+v) I [at’ W+v) = 0 

ap ar ap ap ar (2.14) 

‘ke form the derivative at’/ar from the fourth equation of (2.10), and 

we determine at'/ap from the second equation of (1.7) 

2 aa m+4 = 
ap ap 

eh f& w- l)A 
ap xkp” 

ata f V) _ b a@ f V) ar ap 1 
This equation yields v = w(P, F) , after which we write the last quad- 

rature for ct = F4(r) + Sexp Viz {h(p, r> --Y(P, rH1 dr (2.15) 

The constructed solution depends on five arbitrary function5 and solves 

the problem posed. 
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It can be aald that the fundamental equation8 (1.5) and (1.7) which per- 
mit Inclusion even of electromagnetic fields In the consideration I completely 
describe centrally-symmetric radial flows In an Intrinsic gravity field and 
may be ustlllzed ln cosmology of laotroplc apaoe. The general theory of 
relativity Is slm~la gae dynmnlce ln Riemann space in thla sence. 

It should be noted that the problem posed here of lnvestlgatlng exact 
equations convenient for a.descrlptlon of the relativistic motion of a medium 
in an Intrinsic gravlty’fiild, may be solved by using the variational methods 
of continua and the field equations [ 21. 
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